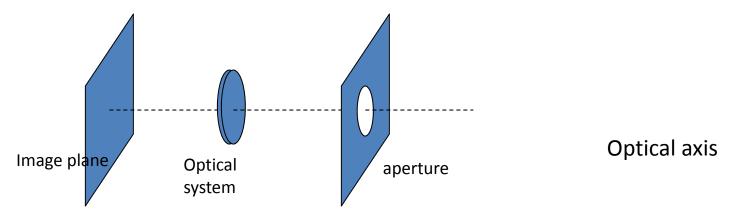
Sensors and Image Formation

- Different types of imaging sensors
- How images are formed (mathematical models)
- Coordinate systems

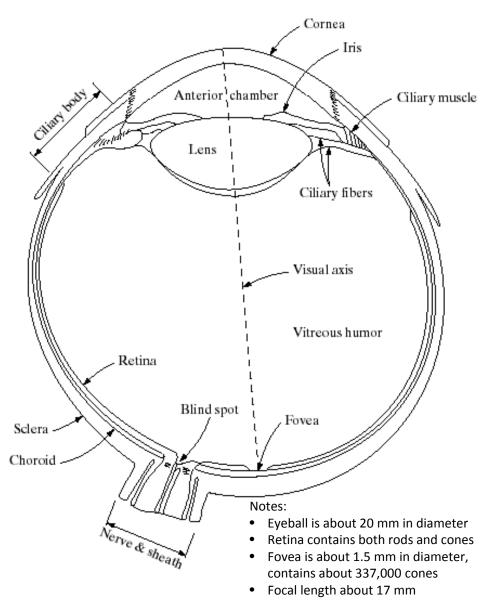
Digital Images

- Digital images are stored as arrays of numbers
- Numbers can represent
 - Intensity (gray level, or each color band)
 - Range
 - X-ray absorption coefficient
 - etc

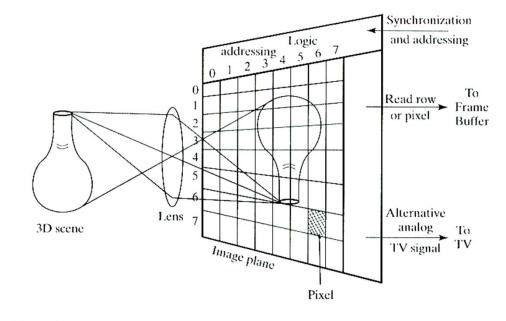


	ΙŪ	ТТ	TO		, J	フ	10		12	Τ0	Т0	10	2) 	, J	10
	10	10	10	10	10	11	10	16	26	59	69	16	10	11	9	10
	10	10	10	11	16	27	49	62	89	134	147	34	12	11	15	15
	10	10	11	20	43	109	153	162	165	175	171	110	22	47	73	39
	9	10	37	117	166	184	187	193	180	170	171	166	65	84	65	14
1	10	43	165	186	185	185	189	181	158	115	135	154	123	92	16	16
3	35	159	183	178	174	155	118	90	77	44	28	77	138	45	51	88
-	79	176	186	174	150	102	78	56	35	19	14	43	102	47	146	102
8	39	177	186	179	175	139	104	47	25	36	90	140	141	34	135	33
2	98	171	181	185	189	188	158	95	68	172	198	186	188	48	84	39
1	14	155	177	188	192	198	193	164	154	201	209	204	210	151	43	114
1	42	144	167	173	178	174	172	166	178	190	202	208	209	208	115	35
1	50	154	161	168	168	162	176	177	175	172	183	189	203	210	171	39
رئ	55 01 u	151	162	170 Uj iv	164	177 Liigi	186	183 119	167	138	173 10j.	190	193	209 زرن	175	40

EGGN 512 Computer Vision


Intensity Image Sensors

- Basic elements of an imaging device
 - Aperture
 - An opening (or "pupil") to limit amount of light, and angle of incoming light rays
 - Optical system
 - Lenses purpose is to focus light from a scene point to a single image point
 - Imaging photosensitive surface
 - Film or sensors, usually a plane


Biological Vision – A Guide to Developing Computer Vision?

- Unfortunately, it is pre-attentive
 - Difficult to measure and study detailed function
- Some information from experiments with
 - Animals (electrophysiology)
 - People's perception (psychophysics)
- A great deal of processing is done right in the retina
 - Data reduction of ~100 million receptors down to ~1 million optic nerve channels
- Further processing done in the visual cortex
 - Specialized detectors for motion, shape, color, binocular disparity
 - Evidence for maps in the cortex in correspondence to the image
- Still, it is an existence proof that it can be done, and well

Digital Camera

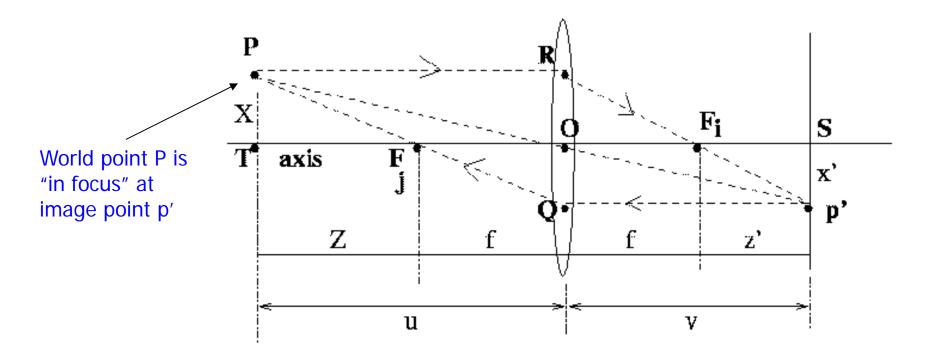
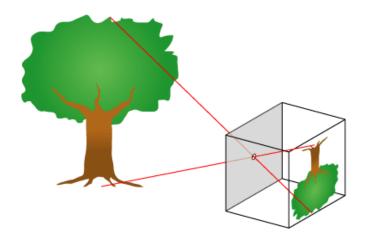
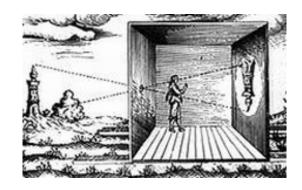

- Image plane is a 2D array of sensor elements
- CCD type (Charge coupled device)
 - Charge accumulates during exposure
 - Charges are transferred out to shift registers, digitized and read out sequentially
- CMOS type (complementary metal oxide on silicon)
 - Light affects the conductivity (or gain) of each photodetector
 - Digitized and read out using a multiplexing scheme
- Main design factors
 - Number and size of sensor elements
 - Chip size
 - ADC resolution

Figure 2.2 A CCD (charge-coupled device) camera imaging a vase; discrete cells convert light energy into electrical charges, which are represented as small numbers when input to a computer.

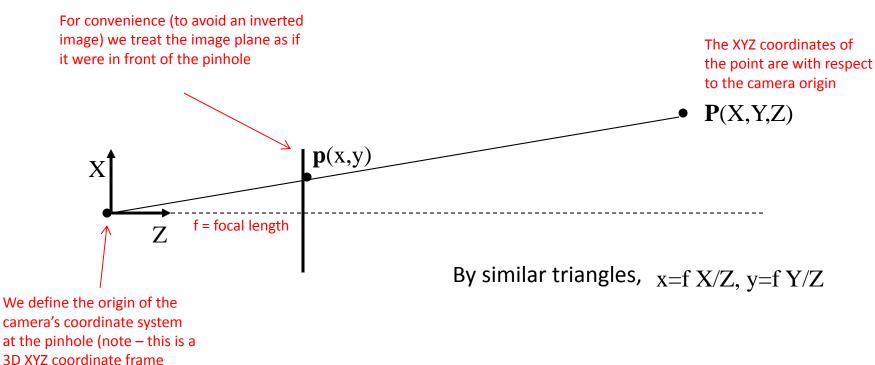
Thin Lens

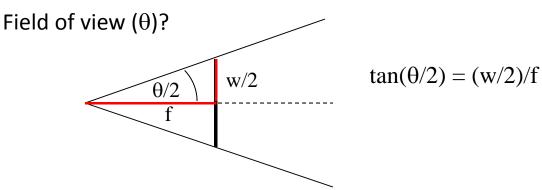

- Rays parallel to the optical axis are deflected to go through the focus
- Rays passing through the center are undeflected



Equation of a thin lens:
$$\frac{1}{Z} + \frac{1}{z'} = \frac{1}{f}$$

Pinhole Camera Model

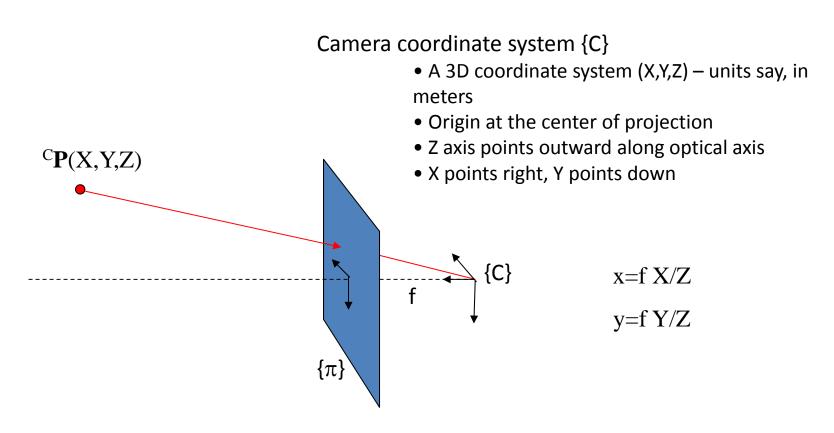

- A good lens can be modeled by a pinhole camera; ie., each ray from the scene passes undeflected to the image plane
- Simple equations describe projection of a scene point onto the image plane ("perspective projection")
- We will use the pinhole camera model exclusively, except for a little later in the course where we model lens distortion in real cameras

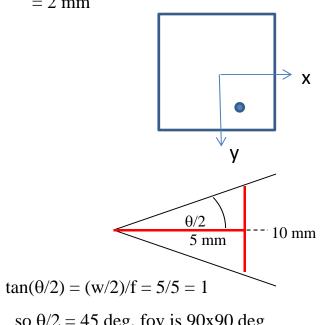


The pinhole camera ("camera obscura") was used by Renaissance painters to help them understand perspective projection

Perspective Projection Equations

Camera vs Image Plane Coords




Image plane coordinate system $\{\pi\}$

- A 2D coordinate system (x,y) units in mm
- Origin at the intersection of the optical axis with the image plane
- In real systems, this is where the CCD or CMOS plane is

Examples

- Assume focal length = 5 mm
- A scene point is located at (X,Y,Z) =(1m, 2m, 5m)
 - What are the image plane coordinates (x,y) in mm?
 - If the image plane is 10mm x 10mm, what is the field of view?
 - A building is 100m wide. How far away do we have to be in order that it fills the field of view?

$$x = f X/Z = (5 mm) (1 m)/(5 m)$$

= 1 mm
 $y = f Y/Z = (5 mm) (2 m)/(5 m)$
= 2 mm

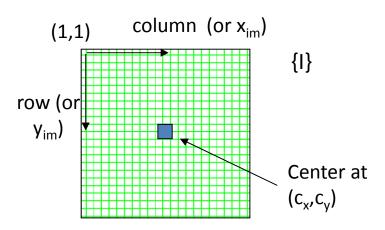
so $\theta/2 = 45$ deg, fov is 90x90 deg

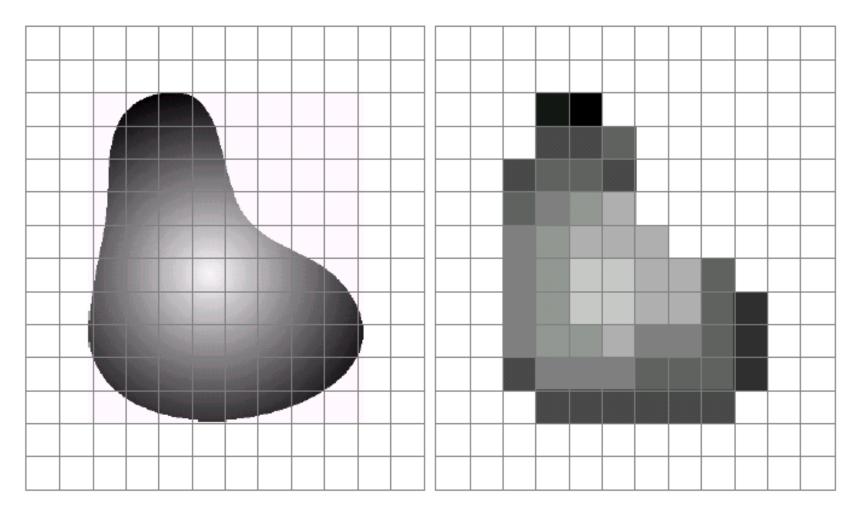
50 m

45 de

Z

Image Buffer


Image plane


- The real image is formed on the CCD plane
- (x,y) units in mm
- Origin in center (principal point)

(0,0) χ

Image buffer

- Digital (or pixel) image
- (row, col) indices
- We can also use (x_{im}, y_{im})
- Origin in upper left

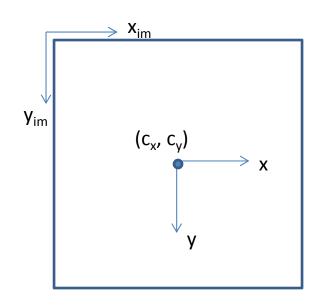

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Conversion between real image and pixel image coordinates

Assume

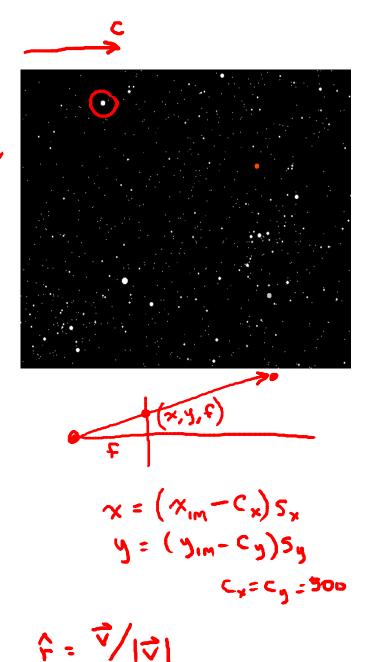
- The image center
 (principal point) is located
 at pixel (c_x,c_y) in the pixel
 image
- The spacing of the pixels is (s_x, s_y) in millimeters

Then

$$x = (x_{im} - c_x) s_x$$
 $x_{im} = x/s_x + c_x$
 $y = (y_{im} - c_y) s_y$ $y_{im} = y/s_y + c_y$

Example

1000 817


4

- A star is located at pixel (r,c)=(100,200) in a telescope image
- What is the 3D unit vector pointing at the star?

- Image is 1000x1000 pixels
- Optical center is in the center of the pixel image
- CCD plane is 10 mm x 10 mm
- Focal length is 1 m

$$\frac{1}{\sqrt{2}} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1$$

Note on focal length

Recall

$$x = (x_{im} - c_x) s_x$$
$$y = (y_{im} - c_y) s_y$$

or

$$x_{im} = x/s_x + c_x$$

 $y_{im} = y/s_y + c_y$

and

$$x = f X/Z$$

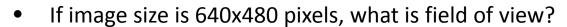
 $y = f Y/Z$

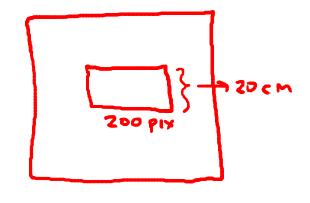
So

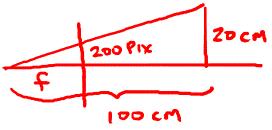
$$x_{im} = (f / s_x) X/Z + c_x$$

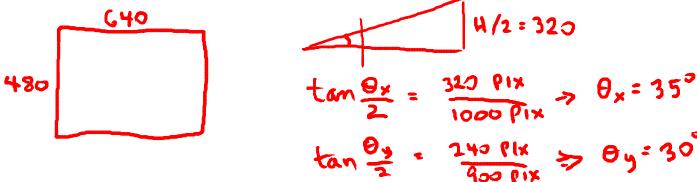
 $y_{im} = (f / s_y) Y/Z + c_y$

All we really need is


$$f_x = (f / s_x)$$
$$f_v = (f / s_v)$$


- We don't need to know the actual values of f and s_x,s_y; just their ratios
- We can alternatively express focal length in units of pixels


Example

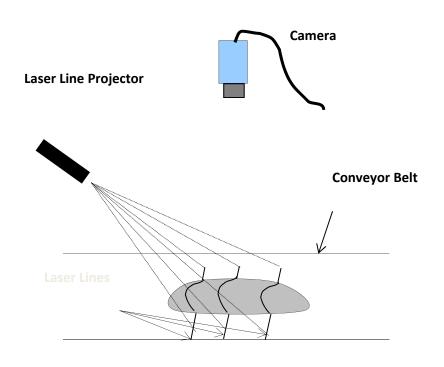

- A camera observes a rectangle 1m away
 - The rectangle is known to be 20cm x 10cm
 - In the image, the rectangle measures 200 x 90 pixels

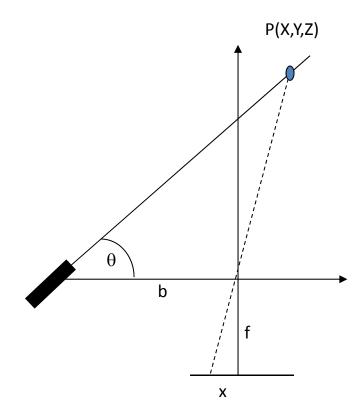
Camera Parameters

- Intrinsic parameters
 - Those parameters needed to relate an image point (in pixels) to a direction in the camera frame
 - f_x, f_y, c_x, c_y
 - Also lens distortion parameters (will discuss later)
- Extrinsic parameters
 - Define the position and orientation (pose) of the camera in the world


Other Common Types of Sensors

Color

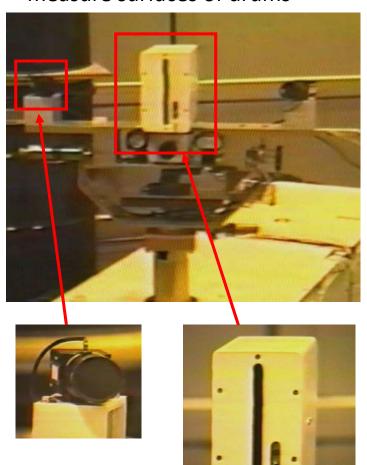

 Each pixel is a triplet of red, green, blue values (RGB)


Range

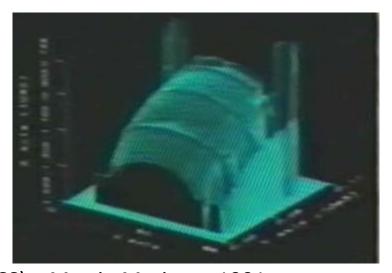
- Each pixel value is the range to the nearest surface in the scene
- Range images are also called depth maps, or 2.5D images
- Types
 - Structured light systems
 - Time of flight LIDAR (Light detection and ranging)

Structured Light (Active Triangulation)

Two equations, two unknowns (X,Z)


- (1) x/f = X/Z
- (2) $\tan \theta = Z/(b+X) \text{ or } \cot \theta = (b+X)/Z$

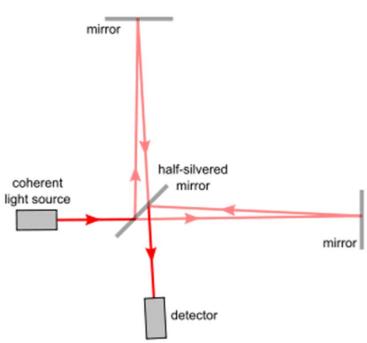
Solve for X,Z:


$$X = Z x/f$$

 $\cot \theta = (b+Zx/f)/Z$, $Z \cot \theta = b + Zx/f$
 $Z(\cot \theta - x/f) = b$, $Z = b/(\cot \theta - x/f)$

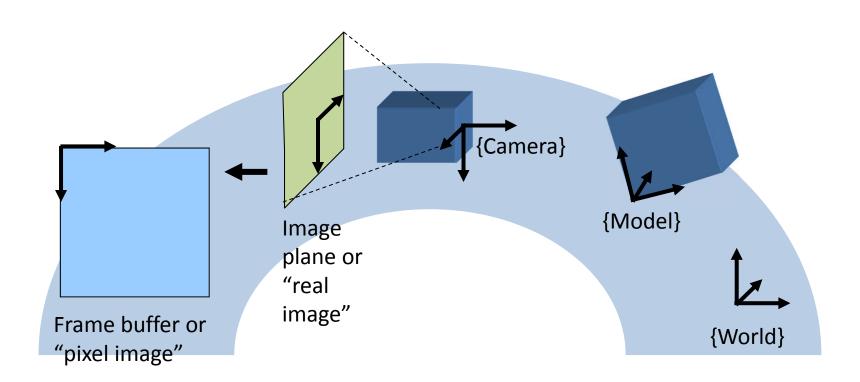
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \frac{b}{f \cot \theta - x} \begin{pmatrix} x \\ y \\ f \end{pmatrix}$$

Structured light sensor to measure surfaces of drums



Intelligent Mobile Sensing System (IMSS) – Martin Marietta, 1991

Time of Flight Systems


- Pulse systems
 - Directly measure time of flight of a very short pulse
 - Many pulses are fired sequentially and the average response is used
 - Requires very accurate sub-nanosecond timing circuitry
- Interferometric systems
 - Measure the difference in phase between the sensed reflected beam and a reference beam
 - There is an "ambiguity interval"
- Sensors often produce an amplitude measurement as well as a range measurement

Frames of Reference

- Image frames are 2D; others are 3D
- The "pose" (position and orientation) of a 3D rigid body has 6 degrees of freedom

